Design of Internalizing PSMA-specific Glu-ureido-based Radiotherapeuticals
نویسندگان
چکیده
Despite the progress in diagnosis and treatment, prostate cancer (PCa) is one of the main causes for cancer-associated deaths among men. Recently, prostate-specific membrane antigen (PSMA) binding tracers have revolutionized the molecular imaging of this disease. The translation of these tracers into therapeutic applications is challenging because of high PSMA-associated kidney uptake. While both the tumor uptake and the uptake in the kidneys are PSMA-specific, the kidneys show a more rapid clearance than tumor lesions. Consequently, the potential of endoradiotherapeutic drugs targeting PSMA is highly dependent on a sustained retention in the tumor - ideally achieved by predominant internalization of the respective tracer. Previously, we were able to show that the pharmacokinetics of the tracers containing the Glu-urea-based binding motif can be further enhanced with a specifically designed linker. Here, we evaluate an eventual influence of the chelator moiety on the pharmacokinetics, including the tumor internalization. A series of tracers modified by different chelators were synthesized using solid phase chemistry. The conjugates were radiolabeled to evaluate the influence on the receptor binding affinity, the ligand-induced internalization and the biodistribution behavior. Competitive binding and internalization assays were performed on PSMA positive LNCaP cells and the biodistribution of the most promising compound was evaluated by positron emission tomography (PET) in LNCaP-tumor-bearing mice. Interestingly, conjugation of the different chelators did not cause significant differences: all compounds showed nanomolar binding affinities with only minor differences. PET imaging of the (68)Ga-labeled CHX-A''-DTPA conjugate revealed that the chelator moiety does not impair the specificity of tumor uptake when compared to the gold standard PSMA-617. However, strong differences of the internalization ratios caused by the chelator moiety were observed: differences in internalization between 15% and 65% were observed, with the CHX-A''-DTPA conjugate displaying the highest internalization ratio. A first-in-man PET/CT study proved the high tumor uptake of this (68)Ga-labeled PSMA-targeting compound. These data indicate that hydrophobic entities at the chelator mediate the internalization efficacy. Based on its specific tumor uptake in combination with its very high internalization ratio, the clinical performance of the chelator-conjugated Glu-urea-based PSMA inhibitors will be further elucidated.
منابع مشابه
Glu-Ureido-Based Inhibitors of Prostate-Specific Membrane Antigen: Lessons Learned During the Development of a Novel Class of Low-Molecular-Weight Theranostic Radiotracers.
In recent years, several radioligands targeting prostate-specific membrane antigen (PSMA) have been clinically introduced as a new class of theranostic radiopharmaceuticals for the treatment of prostate cancer (PC). In the second decade of the 21st century, a new era in nuclear medicine was initiated by the clinical introduction of small-molecule PSMA inhibitor radioligands, 40 y after the clin...
متن کاملNovel and efficient method for solid phase synthesis of urea-containing peptides targeting prostate specific membrane antigen (PSMA) in comparison with current methods
The basic chemical structure of most prostate specific membrane antigen (PSMA) inhibitors which are now in pre-clinical and clinical studies is Glu-Ureido-based peptides. Synthesis of urea-based PSMA inhibitors includes two steps: 1- isocyanate intermediate formation and 2- urea bond formation. In current methods, isocyanate is formed in liquid phase and then reacts with amine existing in liqui...
متن کاملNovel and efficient method for solid phase synthesis of urea-containing peptides targeting prostate specific membrane antigen (PSMA) in comparison with current methods
The basic chemical structure of most prostate specific membrane antigen (PSMA) inhibitors which are now in pre-clinical and clinical studies is Glu-Ureido-based peptides. Synthesis of urea-based PSMA inhibitors includes two steps: 1- isocyanate intermediate formation and 2- urea bond formation. In current methods, isocyanate is formed in liquid phase and then reacts with amine existing in liqui...
متن کامل2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer.
PURPOSE We have synthesized and evaluated in vivo 2-(3-{1-carboxy-5-[(6-[(18)F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [(18)F]DCFPyL, as a potential imaging agent for the prostate-specific membrane antigen (PSMA). PSMA is upregulated in prostate cancer epithelia and in the neovasculature of most solid tumors. EXPERIMENTAL DESIGN [(18)F]DCFPyL was synthesized in t...
متن کاملImaging, Diagnosis, Prognosis 2-(3-{1-Carboxy-5-[(6-[F]Fluoro-Pyridine-3-Carbonyl)- Amino]-Pentyl}-Ureido)-Pentanedioic Acid, [F]DCFPyL, a PSMA-Based PET Imaging Agent for Prostate Cancer
Purpose: We have synthesized and evaluated in vivo 2-(3-{1-carboxy-5-[(6-[F]fluoro-pyridine-3carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [F]DCFPyL, as a potential imaging agent for the prostate-specific membrane antigen (PSMA). PSMA is upregulated in prostate cancer epithelia and in the neovasculature of most solid tumors. Experimental Design: [F]DCFPyL was synthesized in two steps from...
متن کامل